On the Differential Structure of Metric Measure Spaces and Applications

On the Differential Structure of Metric Measure Spaces and Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 104
Release :
ISBN-10 : 9781470414207
ISBN-13 : 1470414201
Rating : 4/5 (201 Downloads)

Book Synopsis On the Differential Structure of Metric Measure Spaces and Applications by : Nicola Gigli

Download or read book On the Differential Structure of Metric Measure Spaces and Applications written by Nicola Gigli and published by American Mathematical Soc.. This book was released on 2015-06-26 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like , where is a function and is a measure. (iii) To show that on spaces with Ricci curvature bounded from below and dimension bounded from above, the Laplacian of the distance function is always a measure and that this measure has the standard sharp comparison properties. This result requires an additional assumption on the space, which reduces to strict convexity of the norm in the case of smooth Finsler structures and is always satisfied on spaces with linear Laplacian, a situation which is analyzed in detail.


On the Differential Structure of Metric Measure Spaces and Applications Related Books