Data Mining and Machine Learning Applications

Data Mining and Machine Learning Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 500
Release :
ISBN-10 : 9781119791782
ISBN-13 : 1119791782
Rating : 4/5 (782 Downloads)

Book Synopsis Data Mining and Machine Learning Applications by : Rohit Raja

Download or read book Data Mining and Machine Learning Applications written by Rohit Raja and published by John Wiley & Sons. This book was released on 2022-03-02 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.


Data Mining and Machine Learning Applications Related Books

Data Mining and Machine Learning Applications
Language: en
Pages: 500
Authors: Rohit Raja
Categories: Computers
Type: BOOK - Published: 2022-03-02 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual underst
Machine Learning for Data Streams
Language: en
Pages: 262
Authors: Albert Bifet
Categories: Computers
Type: BOOK - Published: 2018-03-16 - Publisher: MIT Press

DOWNLOAD EBOOK

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software
Data Streams
Language: en
Pages: 365
Authors: Charu C. Aggarwal
Categories: Computers
Type: BOOK - Published: 2007-04-03 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book primarily discusses issues related to the mining aspects of data streams and it is unique in its primary focus on the subject. This volume covers mini
Mining of Massive Datasets
Language: en
Pages: 480
Authors: Jure Leskovec
Categories: Computers
Type: BOOK - Published: 2014-11-13 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Learning from Data Streams
Language: en
Pages: 486
Authors: João Gama
Categories: Computers
Type: BOOK - Published: 2007-10-11 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data p