Extrinsic Geometric Flows

Extrinsic Geometric Flows
Author :
Publisher : American Mathematical Soc.
Total Pages : 791
Release :
ISBN-10 : 9781470455965
ISBN-13 : 147045596X
Rating : 4/5 (96X Downloads)

Book Synopsis Extrinsic Geometric Flows by : Bennett Chow

Download or read book Extrinsic Geometric Flows written by Bennett Chow and published by American Mathematical Soc.. This book was released on 2020-05-14 with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.


Extrinsic Geometric Flows Related Books

Extrinsic Geometric Flows
Language: en
Pages: 791
Authors: Bennett Chow
Categories: Education
Type: BOOK - Published: 2020-05-14 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this
The Ricci Flow in Riemannian Geometry
Language: en
Pages: 306
Authors: Ben Andrews
Categories: Mathematics
Type: BOOK - Published: 2011 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence
An Introduction to the Geometry of Stochastic Flows
Language: en
Pages: 152
Authors: Fabrice Baudoin
Categories: Mathematics
Type: BOOK - Published: 2004 - Publisher: World Scientific

DOWNLOAD EBOOK

This book aims to provide a self-contained introduction to the local geometry of the stochastic flows associated with stochastic differential equations. It stre
Ricci Flow and the Poincare Conjecture
Language: en
Pages: 586
Authors: John W. Morgan
Categories: Mathematics
Type: BOOK - Published: 2007 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its
An Introduction to the Geometry and Topology of Fluid Flows
Language: en
Pages: 346
Authors: Renzo L. Ricca
Categories: Science
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Leading experts present a unique, invaluable introduction to the study of the geometry and typology of fluid flows. From basic motions on curves and surfaces to