Advances on bond in concrete

Advances on bond in concrete
Author :
Publisher : FIB - International Federation for Structural Concrete
Total Pages : 326
Release :
ISBN-10 : 9782883941632
ISBN-13 : 2883941637
Rating : 4/5 (637 Downloads)

Book Synopsis Advances on bond in concrete by : FIB – International Federation for Structural Concrete

Download or read book Advances on bond in concrete written by FIB – International Federation for Structural Concrete and published by FIB - International Federation for Structural Concrete. This book was released on 2022-12-01 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural behavior of reinforced concrete elements strongly depends on the interaction between the reinforcing bars and the surrounding concrete, which is generally referred as “bond in concrete”. In service conditions, the reinforcement-to-concrete bond governs deformability through the tension stiffening of concrete surrounding the bar as well the crack development and crack width. At Ultimate Limit State, bond governs anchorage and lap splices behavior as well as structural ductility. When plain (smooth) bars were used, the steel-to-concrete bond was mainly associated with “chemical adhesion/friction” that is related to the surface roughness of the rebar. As steel strengths increased the need to enhance interaction between steel and the surrounding concrete was recognized, and square twisted rebars, indented rebars or, later on, ribbed rebars came into the market, the latter being the type of deformed bar most commonly adopted since the 1960/70s. When ribbed rebars became widely used, several research studies started worldwide for better understanding the interaction between ribs and the surrounding concrete. Researchers evidenced the development of micro-cracks (due to the wedge action of the ribs) towards the external face of the structural element. If confinement is provided by the concrete cover, by transverse reinforcement or by an external transverse pressure, the full-anchorage capacity is guaranteed and a pull-out failure occurs, with crushing of concrete between the ribs. On the contrary, with lesser confining action, a splitting failure of bond occurs; the latter may provoke a brittle failure of the lap splice or, in some cases, of anchorages. However, after many years of research studies on bond-related topics, there are still several open issues. In fact, new materials entered into the market, as concrete with recycled aggregates or fibre reinforced concrete; the latter, having a kind of distributed reinforcement into the matrix (the fibres), provides a better confinement to the wedge action of the ribs. In addition, concrete and steel strength continuously increased over the years, causing changes in the bond behavior due to differences in mechanical properties of materials but also to the different concrete composition at the interface with the steel rebar causing a different bond behavior. Moreover, the lower water/cement ratio of these high-strength concrete makes the bleeding phenomena less evident, changing the concrete porosity in the upper layers of the structural element and thus making the current casting position parameters no-longer reliable. Finally, concrete with recycled aggregates are becoming more important in a market that is looking forward to a circular economy. As such, all the experimental results and database that allowed the calibration of bond rules now present in building codes for conventional concrete, may be not be representative of these new types of materials nowadays adopted in practice. Furthermore, after more than 50 years of service life, structural elements may not satisfy the current safety requirements for several reasons, including material degradation (with particular reference to steel corrosion) or increased loads, by also considering the seismic actions that were non considered by building codes at the time of the original design. The structural assessment of existing structures requires proper conceptual models and new approaches for evaluating the reliability of existing structures by also considering the remaining expected service life. In addition, specific rules for older materials, as plain smooth bars, should be revised for a better assessment of old structures. Last, but not least, interventions in existing structures may require new technologies now available such as post-installed rebars. While many advances have been achieved, there remain areas where a better understanding of bond and its mechanisms are required, and where further work is required to incorporate this understanding into safe and economic rules to guide construction and maintenance of existing infrastructures. These aspects were widely discussed within the technical community, particularly in the fib Task Group 2.5 and in the ACI 408 Committee dealing with bond and anchorage issues. Furthermore, special opportunities for discussing bond developments were represented by the International Conferences on ‘Bond in Concrete’ held each decade since 1982 as well as by joint workshops organized by fib TG2.5 and ACI 408. Within this technical collaboration, this Bulletin was conceived, and, thus, it collects selected papers presented at the joint fib-ACI Convention Session on Bond in Concrete held in Detroit (USA) in 2017. The bulletin is based on four main Sections concerning: - General aspects of bond - Anchorages and laps of bars and prestressing tendons - Bond under severe conditions - Degradation of bond for corrosion - Bond in new types of concrete The main aim of the Bulletin is to shed some new lights on the advances in understanding and application of bond related issues achieved over the last few years, and identify the challenges and priorities to be addressed in the next years. Another important aspect of the bulletin is to provide practical information from research findings.


Advances on bond in concrete Related Books

Advances on bond in concrete
Language: en
Pages: 326
Authors: FIB – International Federation for Structural Concrete
Categories: Technology & Engineering
Type: BOOK - Published: 2022-12-01 - Publisher: FIB - International Federation for Structural Concrete

DOWNLOAD EBOOK

Structural behavior of reinforced concrete elements strongly depends on the interaction between the reinforcing bars and the surrounding concrete, which is gene
Nanomaterials in Concrete
Language: en
Pages: 192
Authors: Henry E. Cardenas
Categories: Science
Type: BOOK - Published: 2012 - Publisher: DEStech Publications, Inc

DOWNLOAD EBOOK

Presents original work on how nanomaterials are applied to concrete through electromutagenic processes, which modify the microstructure of concrete materials in
Advances in Cement-Based Materials
Language: en
Pages: 508
Authors: Gideon P.A.G. Van Zijl
Categories: Technology & Engineering
Type: BOOK - Published: 2009-11-02 - Publisher: CRC Press

DOWNLOAD EBOOK

Collection of selected papers on current advances in high performance construction materials. Contributions deal with the development, characterization, applica
Fibre-reinforced Polymer Reinforcement for Concrete Structures
Language: en
Pages: 755
Authors: Kiang-Hwee Tan
Categories: Technology & Engineering
Type: BOOK - Published: 2003 - Publisher: World Scientific

DOWNLOAD EBOOK

Fibre-reinforced polymer (FRP) reinforcement has been used in construction as either internal or external reinforcement for concrete structures in the past deca
Transforming Construction: Advances in Fiber Reinforced Concrete
Language: en
Pages: 872
Authors: Viktor Mechtcherine
Categories:
Type: BOOK - Published: - Publisher: Springer Nature

DOWNLOAD EBOOK