Machine Learning in Non-Stationary Environments

Machine Learning in Non-Stationary Environments
Author :
Publisher : MIT Press
Total Pages : 279
Release :
ISBN-10 : 9780262300438
ISBN-13 : 0262300435
Rating : 4/5 (435 Downloads)

Book Synopsis Machine Learning in Non-Stationary Environments by : Masashi Sugiyama

Download or read book Machine Learning in Non-Stationary Environments written by Masashi Sugiyama and published by MIT Press. This book was released on 2012-03-30 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory, algorithms, and applications of machine learning techniques to overcome “covariate shift” non-stationarity. As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.


Machine Learning in Non-Stationary Environments Related Books

Machine Learning in Non-Stationary Environments
Language: en
Pages: 279
Authors: Masashi Sugiyama
Categories: Computers
Type: BOOK - Published: 2012-03-30 - Publisher: MIT Press

DOWNLOAD EBOOK

Theory, algorithms, and applications of machine learning techniques to overcome “covariate shift” non-stationarity. As the power of computing has grown over
Dataset Shift in Machine Learning
Language: en
Pages: 246
Authors: Joaquin Quinonero-Candela
Categories: Computers
Type: BOOK - Published: 2008-12-12 - Publisher: MIT Press

DOWNLOAD EBOOK

An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs
Deep Learning for Coders with fastai and PyTorch
Language: en
Pages: 624
Authors: Jeremy Howard
Categories: Computers
Type: BOOK - Published: 2020-06-29 - Publisher: O'Reilly Media

DOWNLOAD EBOOK

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with
Interpretable Machine Learning
Language: en
Pages: 320
Authors: Christoph Molnar
Categories: Computers
Type: BOOK - Published: 2020 - Publisher: Lulu.com

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simp
Introduction to Statistical Machine Learning
Language: en
Pages: 535
Authors: Masashi Sugiyama
Categories: Mathematics
Type: BOOK - Published: 2015-10-31 - Publisher: Morgan Kaufmann

DOWNLOAD EBOOK

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined