Multi-Agent Coordination
Author | : Arup Kumar Sadhu |
Publisher | : John Wiley & Sons |
Total Pages | : 320 |
Release | : 2020-12-01 |
ISBN-10 | : 9781119699026 |
ISBN-13 | : 1119699029 |
Rating | : 4/5 (029 Downloads) |
Download or read book Multi-Agent Coordination written by Arup Kumar Sadhu and published by John Wiley & Sons. This book was released on 2020-12-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the latest developments in multi-robot coordination techniques with this insightful and original resource Multi-Agent Coordination: A Reinforcement Learning Approach delivers a comprehensive, insightful, and unique treatment of the development of multi-robot coordination algorithms with minimal computational burden and reduced storage requirements when compared to traditional algorithms. The accomplished academics, engineers, and authors provide readers with both a high-level introduction to, and overview of, multi-robot coordination, and in-depth analyses of learning-based planning algorithms. You'll learn about how to accelerate the exploration of the team-goal and alternative approaches to speeding up the convergence of TMAQL by identifying the preferred joint action for the team. The authors also propose novel approaches to consensus Q-learning that address the equilibrium selection problem and a new way of evaluating the threshold value for uniting empires without imposing any significant computation overhead. Finally, the book concludes with an examination of the likely direction of future research in this rapidly developing field. Readers will discover cutting-edge techniques for multi-agent coordination, including: An introduction to multi-agent coordination by reinforcement learning and evolutionary algorithms, including topics like the Nash equilibrium and correlated equilibrium Improving convergence speed of multi-agent Q-learning for cooperative task planning Consensus Q-learning for multi-agent cooperative planning The efficient computing of correlated equilibrium for cooperative q-learning based multi-agent planning A modified imperialist competitive algorithm for multi-agent stick-carrying applications Perfect for academics, engineers, and professionals who regularly work with multi-agent learning algorithms, Multi-Agent Coordination: A Reinforcement Learning Approach also belongs on the bookshelves of anyone with an advanced interest in machine learning and artificial intelligence as it applies to the field of cooperative or competitive robotics.