Nonparametric Statistical Methods Using R
Author | : John Kloke |
Publisher | : CRC Press |
Total Pages | : 283 |
Release | : 2014-10-09 |
ISBN-10 | : 9781439873441 |
ISBN-13 | : 1439873445 |
Rating | : 4/5 (445 Downloads) |
Download or read book Nonparametric Statistical Methods Using R written by John Kloke and published by CRC Press. This book was released on 2014-10-09 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.