Short Plateau Implants in Posterior Maxilla U2013 Prediction of Bone Turnover

Short Plateau Implants in Posterior Maxilla U2013 Prediction of Bone Turnover
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1163810425
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Short Plateau Implants in Posterior Maxilla U2013 Prediction of Bone Turnover by : Oleg Yefremov

Download or read book Short Plateau Implants in Posterior Maxilla U2013 Prediction of Bone Turnover written by Oleg Yefremov and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Insufficient bone remains challenging for implantologists, especially in posterior maxilla. Short implants are indispensable in such situations. Implant design, bone quality and quantity significantly influence the functional load transfer. Bone strains are major stimuli of bone turnover, but their high magnitudes result in implant failure. Numerical analysis is necessary to correlate bone and implant parameters with bone strain spectrum and to evaluate implant prospect.The aim of the study was to evaluate the impact of Bicon Integra-CPu2122 implants and bone quality on strain levels in adjacent bone to predict implant success/failure in atrophic posterior maxilla.Nine Bicon Integra-CPu2122 implants with 4.5 (N), 5.0 (M), 6.0 (W) mm diameter and 5.0 (S), 6.0 (I), 8.0 (L) mm length were selected for this comparative study. Their 3D models were placed in 36 posterior maxilla segment models with types III and IV bone, 1.0 (A) and 0.5 (B) mm crestal cortical bone thickness. These models were designed in Solidworks 2016 software. All materials were assumed as linearly elastic and isotropic. Elasticity modulus of cortical bone was 13.7 GPa, cancellous bone u2013 1.37/0.69 GPa (type III/IV). Bone-implant assemblies were analyzed in FE software Solidworks Simulation. A total number of 4-node 3D FEs was up to 3,580,000. 120.92 N mean maximal oblique load (molar area) was applied to the center of 7.0 mm abutment. First principal strain (FPS) distributions were studied according to the concept of u201cminimum effective strain pathologicalu201d (MESp) by Frost. Maximal FPSs were correlated with 3000 ustrain MESp to evaluate the prognosis of each implant.Maximal FPSs spectrum 200u20267500 ustrain was found in the cortical-cancellous bone interface. Critical FPSs (>3000 ustrain) were observed for N implants for IV,A/B,S/I/L and III,A,S/I scenarios. For M and W implants, critical FPSs were found only for M,III/IV,A,S/I, M,IV,B,S/I and W,IV,A,S scenarios. Favorable FPSs (200u20263000 ustrain) were calculated in vicinity of W implants for all scenarios excluding IV,A,S. For M implants, favorable FPSs were observed for IV,A/B,L, III,A,L and III,B,S/I/L scenarios, and only III,A,L and III,B,S/I/L for N implants. Implant diameter increase (4.5 vs. 6.0 mm) have led to 71/87, 74/88, 66/88, 57/80, 60/81, 56/73% FPS reduction for 1.0/0.5 mm cortical bone and III,S, III,I, III,L, IV,S, IV,I, IV,L scenarios. FPS magnitudes were found sensitive to bone quality: FPS reduction in type III bone relative to type IV was 25/46, 26/48, 32/48, 17/41, 20/46, 33/50, 48/64, 52/67, 47/76% for 1.0/0.5 mm and N,S, N,I, N,L, M,S, M,I, M,L, W,S, W,I, W,L scenarios.Bone strains were influenced by implant dimensions, cortical bone thickness and bone quality. 4.5 mm diameter implants with the largest length were recommended only for type III bone. 5.0u00d78.0 mm implant was suitable for both bone types and cortical bone thickness, shorter implants u2013 only for type III and 0.5 mm cortical bone. 6.0 mm diameter implants caused positive bone turnover balance for all but one scenarios. Clinicians should consider these findings in planning of short plateau implants.


Short Plateau Implants in Posterior Maxilla U2013 Prediction of Bone Turnover Related Books

Short Plateau Implants in Posterior Maxilla U2013 Prediction of Bone Turnover
Language: en
Pages:
Authors: Oleg Yefremov
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

Insufficient bone remains challenging for implantologists, especially in posterior maxilla. Short implants are indispensable in such situations. Implant design,
Impact of Posterior Maxilla Bone Quality on Short Plateau Implants Success
Language: en
Pages:
Authors: Larisa Linetska
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

It was repeatedly proven that implant design, bone quality and quantity significantly influence the functional load transfer. Posterior maxilla usually offers l
Short Implants and Bone Loss - Evaluation of Bone Turnover
Language: en
Pages:
Authors: Igor Linetskiy
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

Short implants are indispensable in posterior maxilla with insufficient bone height. Implant design, bone quality and degree of bone loss predetermine safe func
Prospect of Short Plateau Implants in Atrophic Posterior Maxilla- Biomechanical Study
Language: en
Pages:
Authors: Vitalij Nesvit
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

Poor bone quality and anatomic restrictions significantly influence implant success in posterior maxilla. Short implants were proposed as a reasonable choice. I
Outlook of Short Finned Implants in the Posterior Maxilla- the Role of Cortical Bone Thickness
Language: en
Pages:
Authors: Larisa Linetska
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

Short finned implants are often applied in critical cases of edentulous posterior maxilla with no available bone for subcrestal implant placement. Resulting hig